Pigment transfer from phytoplankton to zooplankton with emphasis on astaxanthin production in the Baltic Sea food web
نویسندگان
چکیده
The carotenoid astaxanthin is a powerful antioxidant and a compound of vital importance for many marine organisms such as crustaceans and salmonids. Although astaxanthin deficiency may have serious consequences for ecosystem functioning, its origin and transfer in the food web have been little studied. Astaxanthin is produced by planktonic crustaceans, but these cannot synthesise carotenoid pigments de novo; they rely on the availability of astaxanthin precursors through the consumption of phytoplankton algae. We performed 4 laboratory experiments to test how the production of astaxanthin in wild pelagic copepod communities (mainly consisting of Acartia) is affected when different phytoplankton communities (unfertilised, fertilised with N and P, or fertilised with N, P and Si) are supplied as prey. We show that phytoplankton community composition and biomass have profound effects on the production of astaxanthin in calanoid copepods. When they were grazing on a diverse phytoplankton community with high biomass dominated by chlorophytes, dinoflagellates and diatoms with thin silica frustules, astaxanthin production in the copepods was highest. It was lower when the copepods were fed with low phytoplankton biomass or high biomass dominated by large heavily silicified diatoms; these diatoms were not consumed and grazing was mainly on prymnesiophytes. When the astaxanthin production was high, maximum astaxanthin content per copepod individual of about twice the initial level was reached during sunrise. These results suggest increased feeding activity and astaxanthin production during the night and utilisation of astaxanthin for photoprotection and other antioxidant activities during the day.
منابع مشابه
Use of riverine organic matter in plankton
The use of riverine allochthonous organic matter by plankton in the northern Baltic Sea was studied using stable isotopes of carbon and nitrogen. Dissolved and particulate material was sampled in the main Swedish rivers entering the Bothnian Bay and the Bothnian Sea. At 4 sea stations, dissolved matter, plankton and nekton were sampled in l l size-classes: below 0.7 pm filtrate, 0.7-5, 5-20, 20...
متن کاملCan Humic Water Discharge Counteract Eutrophication in Coastal Waters?
A common and established view is that increased inputs of nutrients to the sea, for example via river flooding, will cause eutrophication and phytoplankton blooms in coastal areas. We here show that this concept may be questioned in certain scenarios. Climate change has been predicted to cause increased inflow of freshwater to coastal areas in northern Europe. River waters in these areas are of...
متن کاملBiomass changes and trophic amplification of plankton in a warmer ocean.
Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or ...
متن کاملMesozooplankton Grazing on Picocyanobacteria in the Baltic Sea as Inferred from Molecular Diet Analysis
Our current knowledge on the microbial component of zooplankton diet is limited, and it is generally assumed that bacteria-sized prey is not directly consumed by most mesozooplankton grazers in the marine food webs. We questioned this assumption and conducted field and laboratory studies to examine picocyanobacteria contribution to the diets of Baltic Sea zooplankton, including copepods. First,...
متن کاملCyanobacterial Nitrogen Fixation in the Baltic Sea With focus on Aphanizomenon sp
Cyanobacteria are widely distributed in marine, freshwater and terrestrial habitats. Some cyanobacterial genera can convert di-nitrogen gas (N2) to bioavailable ammonium, i.e. perform nitrogen (N) fixation, and are therefore of profound significance for N cycling. N fixation by summer blooms of cyanobacteria is one of the largest sources of new N for the Baltic Sea. This thesis investigated N f...
متن کامل